Аннотация к учебной программе по алгебре и началам анализа для 10 класса

Рабочая программа учебного курса по математике для 10 класса разработана на основе Примерной программы среднего(полного) общего образования (профильный уровень) с учетом требований федерального компонента государственного стандарта среднего(полного) общего образования и с учетом программ для общеобразовательных школ:

Программы общеобразовательных учреждений. Алгебра и начала анализа. 10-11 классы. – М.: Просвещение, 2009.

Реализация рабочей программы осуществляется с использованием учебника:

Учебник: Алгебра и начала анализа, 10 класс: Учебник для общеобразовательных учреждений / Ю.М. Колягин, Ю.В. Сидоров, М.В. Ткачёва и др. – М.: Мнемозина, 2010.

Данная рабочая программа рассчитана на 136 часов из расчета 4 часов в неделю.

Программа выполняет две основные функции:

<u>Информационно-методическая</u> функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

<u>Организационно-планирующая</u> функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Программа включает три раздела: пояснительную записку; основное содержание с распределением учебных часов по разделам курса; требования к уровню подготовки выпускников.

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

- систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
- развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
- систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
- расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире;
- совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

• формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Цель программы:

- формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
- овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
- развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
- **воспитание** средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Общеучебные умения, навыки и способы деятельности

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых залач:

планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

Требования к уровню подготовки выпускников

<u>В результате изучения математики на профильном уровне в старшей школе ученик должен</u> Знать/понимать

• значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
- универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
- вероятностных характер различных процессов и закономерностей окружающего мира.

Аннотация к учебной программе по алгебре и началам анализа для 11 класса

Настоящая рабочая программа разработана на основе: Программы общеобразовательных учреждений. Алгебра и начала анализа. 10-11 классы. – М.: Просвещение, 2009.

Реализация рабочей программы осуществляется с использованием учебника:

Учебник: Алгебра и начала анализа, 11 класс: Учебник для общеобразовательных учреждений / Ю.М. Колягин, Ю.В. Сидоров, М.В. Ткачёва и др. – М.: Мнемозина, 2010.

Данная рабочая программа рассчитана на 136 часов из расчета 4 часов в неделю.

Программа выполняет две основные функции:

<u>Информационно-методическая</u> функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Программа включает три раздела: пояснительную записку; основное содержание с распределением учебных часов по разделам курса; требования к уровню подготовки выпускников.

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

• систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе

построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

- развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
- систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
- расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире;
- совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
- формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Цель программы:

- формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
- **овладение** устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
- развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
- воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Общеучебные умения, навыки и способы деятельности

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул

на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

Требования к уровню подготовки выпускников

В результате изучения математики на профильном уровне в старшей школе ученик должен Знать/понимать

- значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
- универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
- вероятностных характер различных процессов и закономерностей окружающего мира.

Рабочая программа ориентирована на использование учебного комплекта:

- **1. Учебник:** Алгебра и начала анализа для 11 класса, авторов: Ю.М. Калягин, Ю.В. Сидоров, М.В. Ткачёва, Н.Е. Фёдорова и М.И. Шабунин, под редакцией А.Б. Жижченко. М. Просвещение, 2009.
- **2.** Дидактические материалы для **10** и **11** класса, авторов: М.И. Шабунин, М.В. Ткачёва, Н.Е. Фёдорова, О.Н. Доброва. М. Просвещение, 2009.
- **3. Изучение алгебры и начал анализа в 10 и 11 классе.** Книга для учителя. Авторы: Н.Е. Фёдорова, М.В. Ткачёва,— М. Просвещение, 2009.

Мультимедийные средства обучения:

- 1. Математика 5-11 кл. Практикум. Образовательный комплекс. Диск CD.
- 2. Алгебра и начала анализа 10-11. Диск СD.
- 3. 1С: Математический конструктор 4.5. Диск СD.

Согласно действующему учебному плану и с учетом направленности классов, календарно-тематический план предусматривает следующую **организацию процесса обучения**:

• в 11 классе предполагается обучение в объеме 136 часов (4 часа в неделю).